Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Materials (Basel) ; 16(23)2023 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38068099

RESUMO

This work reports on the development of nanoplasmonic thin films consisting of Au, Ag, or Au-Ag nanoparticles dispersed in a TiO2 matrix and the optimization of the deposition parameters to tune their optical response. The thin films were produced by reactive DC magnetron sputtering of a Ti target with Au and/or Ag pellets placed on the erosion zone. The thicknesses (50 and 100 nm) of the films, the current density (75 and 100 A/m2) applied to the target (titanium), and the number of pellets placed on its surface were the deposition conditions that were used to tailor the optical (LSPR) response. The total noble metal content varied between 13 and 28 at.% for Au/TiO2 films, between 22 and 30 at.% for Ag/TiO2 films, and 8 to 29 at% for the Au-Ag/TiO2 systems with 1:1, 1:1.5, and 1:2 Au:Ag atomic ratios. After thermal annealing at 400 and 600 °C, LSPR bands were found for all films concerning the Au-TiO2 and Au-Ag/TiO2, while for Ag/TiO2, only for thin films with 28 and 30 at.% of Ag concentration. Refractive index sensitivity (RIS) was evaluated for Au and Au-Ag/TiO2 thin films. It was found that for bimetallic nanoparticles, the sensitivity can increase up to five times when compared to a monometallic nanoplasmonic system. Using Au-Ag/TiO2 thin films can decrease the cost of fabrication of LSPR transducers while improving their sensitivity.

2.
Int J Mol Sci ; 24(16)2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37629181

RESUMO

Over the last few years, there has been increasing interest in the use of amorphous carbon thin films with low secondary electron yield (SEY) to mitigate electron multipacting in particle accelerators and RF devices. Previous works found that the SEY increases with the amount of incorporated hydrogen and correlates with the Tauc gap. In this work, we analyse films produced by magnetron sputtering with different contents of hydrogen and deuterium incorporated via the target poisoning and sputtering of CxDy molecules. XPS was implemented to estimate the phase composition of the films. The maximal SEY was found to decrease linearly with the fraction of the graphitic phase in the films. These results are supported by Raman scattering and UPS measurements. The graphitic phase decreases almost linearly for hydrogen and deuterium concentrations between 12% and 46% (at.), but abruptly decreases when the concentration reaches 53%. This vanishing of the graphitic phase is accompanied by a strong increase of SEY and the Tauc gap. These results suggest that the SEY is not dictated directly by the concentration of H/D, but by the fraction of the graphitic phase in the film. The results are supported by an original model used to calculate the SEY of films consisting of a mixture of graphitic and polymeric phases.


Assuntos
Elétrons , Grafite , Deutério , Filmes Cinematográficos , Hidrogênio , Fuligem
3.
Pest Manag Sci ; 79(12): 4731-4753, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37592727

RESUMO

Fungicides are indispensable for high-quality crops, but the rapid emergence and evolution of fungicide resistance have become the most important issues in modern agriculture. Hence, the sustainability and profitability of agricultural production have been challenged due to the limited number of fungicide chemical classes. Resistance to site-specific fungicides has principally been linked to target and non-target site mechanisms. These mechanisms change the structure or expression level, affecting fungicide efficacy and resulting in different and varying resistance levels. This review provides background information about fungicide resistance mechanisms and their implications for developing anti-resistance strategies in plant pathogens. Here, our purpose was to review changes at the target and non-target sites of quinone outside inhibitor (QoI) fungicides, methyl-benzimidazole carbamate (MBC) fungicides, demethylation inhibitor (DMI) fungicides, and succinate dehydrogenase inhibitor (SDHI) fungicides and to evaluate if they may also be associated with a fitness cost on crop pathogen populations. The current knowledge suggests that understanding fungicide resistance mechanisms can facilitate resistance monitoring and assist in developing anti-resistance strategies and new fungicide molecules to help solve this issue. © 2023 Society of Chemical Industry.


Assuntos
Fungicidas Industriais , Fungicidas Industriais/farmacologia , Farmacorresistência Fúngica , Doenças das Plantas/prevenção & controle , Succinato Desidrogenase , Produtos Agrícolas
4.
J. bras. econ. saúde (Impr.) ; 15(1): 71-80, Abril/2023.
Artigo em Inglês, Português | LILACS, ECOS | ID: biblio-1437963

RESUMO

Objetivo: Determinar a incidência de flebite, fatores de risco associados e custos diretos de tratamento. Métodos: Estudo descritivo, correlacional, com análise de custo direto. Utilizaram-se dados da documentação dos enfermeiros entre janeiro 2019 e agosto 2021. Resultados: Incluíram-se 2.374 pessoas com cateter venoso periférico, com internamento na cardiologia. A incidência de flebite foi de 12,38%, das quais 78,23% eram de grau 1 de severidade. Verificou-se associação estatística entre o desenvolvimento de flebite e a administração de amiodarona endovenosa, dias de hospitalização e serviço de internamento. Estimaram-se 1662€ de custos adicionais ao tratamento da flebite, em material clínico e horas de cuidados de enfermagem. Conclusão: Os cuidados de enfermagem são eficazes na identificação precoce e tratamento da flebite, promovendo redução de custos adicionais e garantindo melhores cuidados e ganhos em saúde.


Objective: This study aimed to identify the incidence rate of phlebitis, associated risk factors and treatment direct costs. Methods: Descriptive, correlational study with direct cost analisys. Data from the nurses' clinical records between January 2019 and August 2021 were used. Results: Included 2,374 files of people with peripheral venous catheter who were admitted to Cardiology. The phlebitis incidence rate was 12.38% and regarding severity 78.23% were grade 1. The phlebitits was significantly related with intravenous amiodarone administration, length of stay and physical department. This represents €1662 of additional treatment costs, in clinical supplies and nursing time. Conclusion: Nursing care is effective in the early identification and treatment of phlebitis, reducing costs and improve clinical and economic outcomes.


Assuntos
Flebite , Cateterismo Periférico , Custos e Análise de Custo , Cateteres , Cuidados de Enfermagem
5.
Proc Natl Acad Sci U S A ; 120(2): e2215882120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36595666

RESUMO

Holocene climate in the high tropical Andes was characterized by both gradual and abrupt changes, which disrupted the hydrological cycle and impacted landscapes and societies. High-resolution paleoenvironmental records are essential to contextualize archaeological data and to evaluate the sociopolitical response of ancient societies to environmental variability. Middle-to-Late Holocene water levels in Lake Titicaca were reevaluated through a transfer function model based on measurements of organic carbon stable isotopes, combined with high-resolution profiles of other geochemical variables and paleoshoreline indicators. Our reconstruction indicates that following a prolonged low stand during the Middle Holocene (4000 to 2400 BCE), lake level rose rapidly ~15 m by 1800 BCE, and then increased another 3 to 6 m in a series of steps, attaining the highest values after ~1600 CE. The largest lake-level increases coincided with major sociopolitical changes reported by archaeologists. In particular, at the end of the Formative Period (500 CE), a major lake-level rise inundated large shoreline areas and forced populations to migrate to higher elevation, likely contributing to the emergence of the Tiwanaku culture.


Assuntos
Clima , Lagos , Lagos/química , Água
6.
Curr Res Microb Sci ; 4: 100179, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36582189

RESUMO

Intracellular Ca2+ mobilization induced by second messenger IP3 controls many cellular events in most of the eukaryotic groups. Despite the increasing evidence of IP3-induced Ca2+ in apicomplexan parasites like Plasmodium, responsible for malaria infection, no protein with potential function as an IP3-receptor has been identified. The use of bioinformatic analyses based on previously known sequences of IP3-receptor failed to identify potential IP3-receptor candidates in any Apicomplexa. In this work, we combine the biochemical approach of an IP3 affinity chromatography column with bioinformatic meta-analyses to identify potential vital membrane proteins that present binding with IP3 in Plasmodium falciparum. Our analyses reveal that PF3D7_0523000, a gene that codes a transport protein associated with multidrug resistance as a potential target for IP3. This work provides a new insight for probing potential candidates for IP3-receptor in Apicomplexa.

7.
Microorganisms ; 10(12)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36557594

RESUMO

Strawberry (Fragaria x ananassa, Duch.) is an important crop worldwide. However, since it is a highly demanding crop in terms of the chemical conditions of the substrate, a large part of strawberry production implies the application of large amounts of fertilizers in the production fields. This practice can cause environmental problems, in addition to increases in the fruit's production costs. In this context, applying plant growth-promoting bacteria in production fields can be an essential strategy, especially thanks to their ability to stimulate plant growth via different mechanisms. Therefore, this study aimed to test in vitro and in vivo the potential of bacteria isolated from strawberry leaves and roots to directly promote plant growth. The isolates were tested in vitro for their ability to produce auxins, solubilize phosphate and fix nitrogen. Isolates selected in vitro were tested on strawberry plants to promote plant growth and increase the accumulation of nitrogen and phosphorus in the leaves. The tested isolates showed an effect on plant growth according to biometric parameters. Among the tested isolates, more expressive results for the studied variables were observed with the inoculation of the isolate MET12M2, belonging to the species Brevibacillus fluminis. In general, bacterial inoculation induced strain-dependent effects on strawberry growth. In vitro and in vivo assays showed the potential use of the B. fluminis MET12M2 isolate as a growth promoter for strawberries.

8.
Biomed Phys Eng Express ; 9(1)2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36327450

RESUMO

Several synthetic and natural materials have been studied for the confection of temporary grafts for application in regenerative medicine, however, the development of a material with adequate properties remains a challenge, mainly because its degradation kinetics in biological systems. Nature provides materials with noble properties that can be used as such for many applications, thus, taking advantage of the available morphology and assembled structures of plants, we propose to study the vegetable stems for use as temporary graft. Since thein vivodegradation is maybe one of the most important features of the temporary grafts, here we have implanted the plant stems from pumpkin, papaya, and castor into the subepithelial tissue of animals and followed their biodegradation process and the local inflammatory response. Mechanical tests, FTIR and contact angle with water were also analysed. The results indicated the mechanical properties and the contact angle were adequate for use in regenerative medicine. The results of thein vivostudies indicated a beneficial inflammatory process and a gradual disintegration of the materials within 60 days, suggesting the plants stems as new and potential materials for development of grafts for use in the field of regenerative medicine.


Assuntos
Medicina Regenerativa , Animais , Medicina Regenerativa/métodos , Caules de Planta
9.
Phys Chem Chem Phys ; 24(42): 25773-25787, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36263762

RESUMO

350 nm and 550 nm thick InGaN/GaN bilayers were irradiated with different energies (from ∼82 to ∼38 MeV) of xenon (129Xe) ions and different fluences of 1.2 GeV lead (208Pb) ions, respectively. The radiation effects of the swift heavy ions' (SHIs) bombardment were investigated using Rutherford Backscattering Spectrometry in Channeling mode (RBS/C), X-Ray Diffraction (XRD), and micro-Raman spectroscopy. To assess damage profiles, the RBS/C analysis was followed by Monte Carlo simulations using the McChasy code, revealing that InGaN is more susceptible to irradiation damage than GaN. Moreover, the simulations suggest that both randomly displaced atoms (possibly due to partial amorphization) and dislocation loops are formed. The elastic response to radiation was estimated by measuring the expansion of the c-lattice parameter. XRD revealed the presence of strain even in low fluence samples where only a small fraction of the sample volume suffered direct SHI impacts. Micro-Raman suggests that for low defect concentrations, it is dominantly biaxial, while for high defect concentrations, the simultaneous increase of hydrostatic and biaxial occurs. As a driving force of the lattice expansion, we point out the Poisson effect resulting from the pressure exerted by the SHI tracks on the surrounding undamaged crystal structure.

10.
Small ; 18(49): e2102235, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36310127

RESUMO

The widespread adoption of gGaN in radiation-hard semiconductor devices relies on a comprehensive understanding of its response to strongly ionizing radiation. Despite being widely acclaimed for its high radiation resistance, the exact effects induced by ionization are still hard to predict due to the complex phase-transition diagrams and defect creation-annihilation dynamics associated with group-III nitrides. Here, the Two-Temperature Model, Molecular Dynamics simulations and Transmission Electron Microscopy, are employed to study the interaction of Swift Heavy Ions with GaN at the atomic level. The simulations reveal a high propensity of GaN to recrystallize the region melted by the impinging ion leading to high thresholds for permanent track formation. Although the effect exists in all studied electronic energy loss regimes, its efficiency is reduced with increasing electronic energy loss, in particular when there is dissociation of the material and subsequent formation of N2 bubbles. The recrystallization is also hampered near the surface where voids and pits are prominent. The exceptional agreement between the simulated and experimental results establishes the applicability of the model to examine the entire electronic energy loss spectrum. Furthermore, the model supports an empirical relation between the interaction cross sections (namely for melting and amorphization) and the electronic energy loss.


Assuntos
Eletrônica
11.
Sensors (Basel) ; 22(18)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36146392

RESUMO

In this study, thin films composed of gold nanoparticles embedded in a copper oxide matrix (Au:CuO), manifesting Localized Surface Plasmon Resonance (LSPR) behavior, were produced by reactive DC magnetron sputtering and post-deposition in-air annealing. The effect of low-power Ar plasma etching on the surface properties of the plasmonic thin films was studied, envisaging its optimization as gas sensors. Thus, this work pretends to attain the maximum sensing response of the thin film system and to demonstrate its potential as a gas sensor. The results show that as Ar plasma treatment time increases, the host CuO matrix is etched while Au nanoparticles are uncovered, which leads to an enhancement of the sensitivity until a certain limit. Above such a time limit for plasma treatment, the CuO bonds are broken, and oxygen is removed from the film's surface, resulting in a decrease in the gas sensing capabilities. Hence, the importance of the host matrix for the design of the LSPR sensor is also demonstrated. CuO not only provides stability and protection to the Au NPs but also promotes interactions between the thin film's surface and the tested gases, thereby improving the nanocomposite film's sensitivity. The optimized sensor sensitivity was estimated at 849 nm/RIU, which demonstrates that the Au-CuO thin films have the potential to be used as an LSPR platform for gas sensors.

12.
Cell Rep Methods ; 2(8): 100274, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-36046624

RESUMO

Cellular barcoding techniques are powerful tools to understand microbial pathogenesis. However, barcoding strategies have not been broadly applied to protozoan parasites, which have unique genomic structures and virulence strategies compared with viral and bacterial pathogens. Here, we present a CRISPR-based method to barcode protozoa, which we successfully apply to Toxoplasma gondii and Trypanosoma brucei. Using libraries of barcoded T. gondii, we evaluate shifts in the population structure from acute to chronic infection of mice. Contrary to expectation, most barcodes were present in the brain one month post-intraperitoneal infection in both inbred CBA/J and outbred Swiss mice. Although parasite cyst number and barcode diversity declined over time, barcodes representing a minor fraction of the inoculum could become a dominant population in the brain by three months post-infection. These data establish a cellular barcoding approach for protozoa and evidence that the blood-brain barrier is not a major bottleneck to colonization by T. gondii.


Assuntos
Toxoplasma , Camundongos , Animais , Toxoplasma/genética , Proteínas de Protozoários/genética , Camundongos Endogâmicos CBA , Virulência , Encéfalo/metabolismo
13.
Pest Manag Sci ; 78(12): 5251-5258, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36054071

RESUMO

BACKGROUND: Quinone outside inhibitor (QoI) fungicides have not been effective in controlling the wheat blast disease [Pyricularia oryzae Triticum lineage (PoTl)] in Brazil. The first report of resistance of PoTl to QoIs in this country occurred in 2015. This study aimed to test hypotheses about the changes in fitness parameters and competitive advantage of the QoI-resistant (R) PoTl isolate group compared to the sensitive (S) isolate group. Mycelial growth on PDA medium and in vivo conidial production, incubation period and disease severity were analyzed as fitness parameters. The competitive ability was measured on wheat leaves and heads inoculated with mixtures of R:S isolates at the following proportions: 0S:100R, 20S:80R, 50S:50R, 80S:20R, 100S:0R, and 0S:0R. RESULTS: The QoI-R isolate group had significantly higher fitness than the sensitive isolate group, considering both in vitro and in vivo parameters. The highest in vivo conidial production on wheat leaves and the highest leaf and head disease severity were detected when resistant strains were predominant in the isolate's mixtures (20S:80R or 0S:100R proportions), in the absence of fungicide pressure. Conidia harvested from wheat blast lesions on leaves inoculated with 20S:80R and 0S:100R mixtures were resistant to QoIs in vitro assays based on discriminatory doses of the fungicide. CONCLUSION: Therefore, QoI resistance facilitated a higher fitness and a competitive advantage in PoTl, which contrasts with the evolutionary theory that associates a fitness cost to fungicide resistance. We discuss the evolutionary and ecological implications of the higher fitness as found in the fungicide-resistant adapted populations of the wheat blast pathogen. © 2022 Society of Chemical Industry.


Assuntos
Fungicidas Industriais , Fungicidas Industriais/farmacologia , Triticum , Estrobilurinas/farmacologia , Farmacorresistência Fúngica , Doenças das Plantas , Esporos Fúngicos , Benzoquinonas
14.
Access Microbiol ; 4(6): acmi000370, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36004365

RESUMO

Introduction: Group B Streptococcus (GBS) is a human commensal bacterium that is also associated with infection in pregnant and non-pregnant adults, neonates and elderly people. Gap Statement: The authors hypothesize that knowledge of regional GBS genetic patterns may allow the use of prevention and treatment measures to reduce the burden of streptococcal disease. Aim: The aim was to report the genotypic diversity and antimicrobial sensitivity profiles of invasive, noninvasive urinary and colonizing GBS strains, and evaluate the relationships between these findings. Methodology: The study included consecutive and non-duplicated GBS isolates recovered in southern Brazil from 2015 to 2017. We performed multiple-locus variable-number tandem repeat analysis (MLVA) and PCR analyses to determine capsular serotypes and identify the presence of the resistance genes mefA/E, ermB and ermA/TR, and also antibiotic susceptibility testing. Results: The sample consisted of 348 GBS strains, 42 MLVA types were identified, and 4 of them represented 64 % of isolates. Serotype Ia was the most prevalent (42.2 %) and was found in a higher percentage associated with colonization, followed by serotypes V (24.4 %), II (17.8 %) and III (7.8 %). Serotype V was associated with invasive isolates and serotypes II and III with noninvasive isolates, without significant differences. All isolates were susceptible to penicillin. GBS 2018/ hvgA was observed in 17 isolates, with 11 belonging to serogroup III. The Hunter-Gaston diversity index was calculated as 0.879. The genes mefA/E, erm/B and erm/A/TR were found in 45, 19 and 46 isolates. Conclusion: This report suggests that the circulating GBS belong to a limited number of genetic lineages. The most common genotypes were Ia/MT12 and V/MT18, which are associated with high resistance to macrolides and the presence of the genes mefA/E and ermA/TR. Penicillin remains the antibiotic of choice. Implementation of continuous surveillance of GBS infections will be essential to assess GBS epidemiology and develop accurate GBS prevention, especially strategies associated with vaccination.

15.
Environ Microbiol ; 24(3): 1430-1453, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34995419

RESUMO

Due to an increasing demand for sustainable agricultural practices, the adoption of microbial volatile organic compounds (VOCs) as antagonists against phytopathogens has emerged as an eco-friendly alternative to the use of agrochemicals. Here, we identified three Pseudomonas strains that were able to inhibit, in vitro, up to 80% of mycelial growth of the phytopathogenic fungus Thielaviopsis ethacetica, the causal agent of pineapple sett rot disease in sugarcane. Using GC/MS, we found that these bacteria produced 62 different VOCs, and further functional validation revealed compounds with high antagonistic activity to T. ethacetica. Transcriptomic analysis of the fungal response to VOCs indicated that these metabolites downregulated genes related to fungal central metabolism, such as those involved in carbohydrate metabolism. Interestingly, genes related to the DNA damage response were upregulated, and micro-FTIR analysis corroborated our hypothesis that VOCs triggered DNA damage. Electron microscopy analysis showed critical morphological changes in mycelia treated with VOCs. Altogether, these results indicated that VOCs hampered fungal growth and could lead to cell death. This study represents the first demonstration of the molecular mechanisms involved in the antagonism of sugarcane phytopathogens by VOCs and reinforces that VOCs can be a sustainable alternative for use in phytopathogen biocontrol.


Assuntos
Ascomicetos , Saccharum , Compostos Orgânicos Voláteis , Ascomicetos/metabolismo , Bactérias/metabolismo , Dano ao DNA , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/farmacologia
16.
Sensors (Basel) ; 21(23)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34884159

RESUMO

In a new era for digital health, dry electrodes for biopotential measurement enable the monitoring of essential vital functions outside of specialized healthcare centers. In this paper, a new type of nanostructured titanium-based thin film is proposed, revealing improved biopotential sensing performance and overcoming several of the limitations of conventional gel-based electrodes such as reusability, durability, biocompatibility, and comfort. The thin films were deposited on stainless steel (SS) discs and polyurethane (PU) substrates to be used as dry electrodes, for non-invasive monitoring of body surface biopotentials. Four different Ti-Me (Me = Al, Cu, Ag, or Au) metallic binary systems were prepared by magnetron sputtering. The morphology of the resulting Ti-Me systems was found to be dependent on the chemical composition of the films, specifically on the type and amount of Me. The existence of crystalline intermetallic phases or glassy amorphous structures also revealed a strong influence on the morphological features developed by the different systems. The electrodes were tested in an in-vivo study on 20 volunteers during sports activity, allowing study of the application-specific characteristics of the dry electrodes, based on Ti-Me intermetallic thin films, and evaluation of the impact of the electrode-skin impedance on biopotential sensing. The electrode-skin impedance results support the reusability and the high degree of reliability of the Ti-Me dry electrodes. The Ti-Al films revealed the least performance as biopotential electrodes, while the Ti-Au system provided excellent results very close to the Ag/AgCl reference electrodes.


Assuntos
Nanoestruturas , Titânio , Impedância Elétrica , Eletrodos , Humanos , Reprodutibilidade dos Testes
17.
FEMS Microbiol Lett ; 368(19)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34718530

RESUMO

Essential oils can be a useful alternative to the use of synthetic fungicides because they have biological potential and are relatively safe for food and agricultural products. The objectives of the present study were to evaluate the antifungal and antimycotoxigenic activities of the essential oils from Satureja montana L., Myristica fragrans H. and Cymbopogon flexuosus S. against Aspergillus flavus and Aspergillus ochraceus, as well as their effects on ergosterol synthesis and membrane morphology. The antifungal potential was evaluated by mycelial growth analysis and scanning electron microscopy. Fungicidal effects against A. flavus, with MFC of 0.98, 15.62 and 0.98 µL/mL, respectively, were observed for the essential oils from S. montana, M. fragrans and C. flexuosus. Aspergillus ochraceus did not grow in the presence of concentrations of 3.91, 15.62 and 0.98 µL/mL of the essential oils from S. montana, M. fragrans and C. flexuosus, respectively. The essential oils significantly inhibited the production of ochratoxin A by the fungus A. ochraceus. The essential oils also inhibited the production of aflatoxin B1 and aflatoxin B2. The biosynthesis of ergosterol was inhibited by the applied treatments. Biological activity in the fungal cell membrane was observed in the presence of essential oils, given that deleterious effects on the morphologies of the fungi were detected. The essential oils under study are promising as food preservatives because they significantly inhibit toxigenic fungi that contaminate food. In addition, the essential oils hindered the biosynthesis of mycotoxins.


Assuntos
Aspergillus flavus , Aspergillus ochraceus , Cymbopogon , Myristica , Óleos Voláteis , Satureja , Antifúngicos/farmacologia , Aspergillus flavus/efeitos dos fármacos , Aspergillus ochraceus/efeitos dos fármacos , Cymbopogon/química , Ergosterol/biossíntese , Montana , Micotoxinas , Myristica/química , Óleos Voláteis/farmacologia , Satureja/química
18.
Front Cell Infect Microbiol ; 11: 728425, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447699

RESUMO

The ability of an organism to sense and respond to environmental redox fluctuations relies on a signaling network that is incompletely understood in apicomplexan parasites such as Toxoplasma gondii. The impact of changes in redox upon the development of this intracellular parasite is not known. Here, we provide a revised collection of 58 genes containing domains related to canonical antioxidant function, with their encoded proteins widely dispersed throughout different cellular compartments. We demonstrate that addition of exogenous H2O2 to human fibroblasts infected with T. gondii triggers a Ca2+ flux in the cytosol of intracellular parasites that can induce egress. In line with existing models, egress triggered by exogenous H2O2 is reliant upon both Calcium-Dependent Protein Kinase 3 and diacylglycerol kinases. Finally, we show that the overexpression a glutaredoxin-roGFP2 redox sensor fusion protein in the parasitophorous vacuole severely impacts parasite replication. These data highlight the rich redox network that exists in T. gondii, evidencing a link between extracellular redox and intracellular Ca2+ signaling that can culminate in parasite egress. Our findings also indicate that the redox potential of the intracellular environment contributes to normal parasite growth. Combined, our findings highlight the important role of redox as an unexplored regulator of parasite biology.


Assuntos
Toxoplasma , Cálcio/metabolismo , Sinalização do Cálcio , Humanos , Peróxido de Hidrogênio , Oxirredução , Toxoplasma/metabolismo
19.
Microbiol Res ; 251: 126793, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34325193

RESUMO

Botrytis cinerea causes the gray mold disease in a wide range of plant hosts, especially in post-harvest periods. The control of this phytopathogen has been accomplished through the application of fungicides. However, this practice can cause environmental problems and increase fruit production costs. In addition, this fungus species has developed resistance to conventional synthetic fungicides. In this context, plant growth-promoting bacteria have shown potential for application in agricultural production because they are able to stimulate plant growth through different mechanisms, including the biological control of phytopathogens (indirect growth promotion mechanism). The aim of this work was to evaluate in vitro and in fruits the potential for indirect plant growth-promotion of bacteria isolated from strawberry leaves and roots. Dual plate method and inverted plate method were used to verify the ability of controlling in vitro the growth of Botrytis cinerea via the production of diffusible and volatile antifungal compounds, respectively. The effect of six bacterial isolates that showed greater potential for biological control in vitro was evaluated by scanning electron microscopy. Antifungal compounds produced by these bacterial isolates were identified by liquid chromatography coupled with mass spectrometry. Six bacterial strains were tested on strawberry pseudofruits. Five selected strains belong to the genus Bacillus and one to the genus Pantoea sp. Selected strains were able to inhibit more than 80 % of the mycelial growth of B. cinerea by the production of diffusible compounds and 90 % by volatile antifungal compounds production. Scanning electron microscopy showed the intense degradation of fungal hyphae caused by the presence of all bacterial strains. Bioactive compounds (salycilamide, maculosin, herniarin, lauroyl diethanolamide, baptifoline, undecanedioic acid, botrydial, 8 3-butylidene-7-hydroxyphthalide and N-(3-oxo-henoyl)-homoserine lactone) were obtained from liquid culture of these strains and extraction with ethyl acetate. All six isolates tested in vivo reduced the incidence of gray mold in strawberry pseudofruits in postharvest. It is concluded that isolates 26, 29, 65, 69, 132 (Bacillus sp.) and MQT16M1 (Pantoea sp.) have potential application for the biological control of Botrytis cinerea in strawberry via the production of diffusible and volatile antifungal compounds.


Assuntos
Antifúngicos , Botrytis , Endófitos , Fragaria , Frutas , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Bacillus/química , Botrytis/efeitos dos fármacos , Endófitos/química , Fragaria/microbiologia , Frutas/microbiologia , Pantoea/química
20.
Life Sci Alliance ; 4(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34135099

RESUMO

Progress towards a protective vaccine against malaria remains slow. To date, only limited protection has been routinely achieved following immunisation with either whole-parasite (sporozoite) or subunit-based vaccines. One major roadblock to vaccine progress, and to pre-erythrocytic parasite biology in general, is the continued reliance on manual salivary gland dissection for sporozoite isolation from infected mosquitoes. Here, we report development of a multi-step method, based on batch processing of homogenised whole mosquitoes, slurry, and density-gradient filtration, which combined with free-flow electrophoresis rapidly produces a pure, infective sporozoite inoculum. Human-infective Plasmodium falciparum and rodent-infective Plasmodium berghei sporozoites produced in this way are two- to threefold more infective than salivary gland dissection sporozoites in in vitro hepatocyte infection assays. In an in vivo rodent malaria model, the same P. berghei sporozoites confer sterile protection from mosquito-bite challenge when immunisation is delivered intravenously or 60-70% protection when delivered intramuscularly. By improving purity, infectivity, and immunogenicity, this method represents a key advancement in capacity to produce research-grade sporozoites, which should impact delivery of a whole-parasite based malaria vaccine at scale in the future.


Assuntos
Culicidae/parasitologia , Malária/prevenção & controle , Plasmodium berghei/patogenicidade , Plasmodium falciparum/patogenicidade , Esporozoítos/patogenicidade , Animais , Modelos Animais de Doenças , Drosophila , Células Hep G2 , Humanos , Imunização , Masculino , Ratos , Esporozoítos/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...